High-order quantum adiabatic approximation and Berry's phase factor

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 211595
(http://iopscience.iop.org/0305-4470/21/7/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:35

Please note that terms and conditions apply.

High-order quantum adiabatic approximation and Berry's phase factor

Chang-Pu Sun
Physics Department, Northeast Normal University, Changchun, Jilin Province, People's Republic of China

Received 2 June 1987, in final form 22 September 1987

Abstract

In this paper high-order adiabatic approximate solutions of the Schrödinger equation for a quantum system with a slowly changing Hamiltonian are presented. We not only obtain Berry's phase factor and strictly prove the quantum adiabatic theorem in the first-order approximation, but also discuss an observable effect of the second adiabatic approximation.

1. Introduction

Recently it has been recognised that in quantum mechanics there exists a new topological phase factor, namely Berry's phase factor [1]. This phase factor is not only used to explain the Aharonov-Bohm effect and Aharonov-Susskind effect [2], but has also been verified in more recent experiments [3-6].

In theoretical aspects, the concept of Berry's phase has appeared in many areas of physics, e.g. anomalies in gauge field theories [7], the quantum Hall effect [8], the Born-Oppenheimer aproximation [9], and so on. Berry and other authors have also discussed the classical counterparts of the quantum Berry phase [10].

Berry's phase factor was discovered by Berry in investigating the quantum adiabatic theorem [11]. Let

$$
\begin{equation*}
\hat{H}=\hat{H}\left[R_{1}(t), R_{2}(t), \ldots, R_{N}(t)\right] \equiv \hat{H}[R(t)] \tag{1}
\end{equation*}
$$

be the Hamiltonian of a quantum system, which varies with the parameters $R_{1}(t), R_{2}(t), \ldots, R_{N}(t)$ depending on time t. When the Hamiltonian changes from a certain initial value $\hat{H}\left[R\left(t_{0}\right)\right]$ at time t_{0} to a certain final value $\hat{H}\left[R\left(t_{1}\right)\right]$ at time t_{1}, if the system is initially in an eigenstate $\phi_{n}\left[R\left(t_{0}\right)\right]$ of $\hat{H}\left[R\left(t_{0}\right)\right]$, then it will, under the adiabatic limit $T \rightarrow \infty$, pass into the eigenstate $\phi_{n}\left[R\left(t_{1}\right)\right]$ of $\hat{H}\left[R\left(t_{1}\right)\right]$ at time t_{1}. This result is known as the quantum adiabatic theorem. According to it, when the Hamiltonian is transported round a closed path c in parameter space $M:\{R\}$ from t_{0} to t_{1}, for which $R\left(t_{0}\right)=R\left(t_{1}\right)$, the wavefunction at time t_{1} is

$$
\begin{equation*}
\left|\psi\left(t_{1}\right)\right\rangle=\exp \left(\frac{1}{\mathrm{i} \hbar} \int_{t_{0}}^{t_{1}} E_{n}\left[R\left(t^{\prime}\right)\right] \mathrm{d} t^{\prime}\right) \exp \left[\mathrm{i} \nu_{n}(c)\right]\left|\phi_{n}[R(t)]\right\rangle \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\exp \left[\mathrm{i} \nu_{n}(c)\right]=\exp \left(-\oint_{c}\left\langle\phi_{n}[R] \left\lvert\, \sum_{i=1}^{n} \frac{\partial}{\partial R_{i}} \phi_{n}[R]\right.\right\rangle \mathrm{d} R_{i}\right) \tag{3}
\end{equation*}
$$

is a geometrical phase factor in addition to the familiar dynamical phase factor, which is called Berry's phase factor. Berry's phase $\nu_{n}(c)$ is mathematically interpreted as a holonomy of a Hermitian line bundle over the paramter manifold by Simon [1].

In this paper we will pay attention to the high-order adiabatic approximation and the manifestation of the second term in an observable quantum process.

2. Motion equation in the changing representation

The changing representation is a state space spanned by all the eigenstates $\phi_{m}[R](m=1,2, \ldots, N)$ of the Hamiltonian $\hat{H}[R]$ at time t for the eigenvalues $E_{m}(R)$. The evolution operator $U\left(t, t_{0}\right)$ of this system in this representation is expressed as

$$
\begin{equation*}
U\left(t, t_{0}\right)=\sum_{m, k=0}^{N} \exp \left(\frac{1}{i \hbar} \int_{t_{0}}^{t} E_{m}\left[R^{\prime}\right] \mathrm{d} t^{\prime}\right) C_{m k}(t)\left|\phi_{m}[R(t)]\right\rangle\left\langle\phi_{k}\left[R\left(t_{0}\right)\right]\right| \tag{4}
\end{equation*}
$$

where

$$
C_{m k}(0)=\delta_{m k} \quad R^{\prime} \equiv R\left(t^{\prime}\right)
$$

Substituting (4) into the Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t} U\left(t, t_{0}\right)=\hat{H}[R(t)] U\left(t, t_{0}\right) \tag{5}
\end{equation*}
$$

we obtain the motion equation in the changing representation:

$$
\begin{align*}
\dot{C}_{m k}(t)+\left\langle\phi_{m}\right. & {[R]\left|\dot{\phi}_{m}[R]\right\rangle C_{m k}(t) } \\
& =-\sum_{n \neq k} C_{n k}(t) \exp \left(\frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t}\left(E_{m}\left[R^{\prime}\right]-E_{n}\left[R^{\prime}\right]\right) \mathrm{d} t^{\prime}\right)\left\langle\phi_{m}[R] \mid \dot{\phi}_{n}[R]\right\rangle . \tag{6}
\end{align*}
$$

In order to study the influence of the changing rate of $\hat{H}[R(t)]$ on the behaviour of the solution of (6), we define

$$
\begin{array}{lc}
T=t_{\mathrm{L}}-t_{0} & S=t / T \\
b_{m k}(S)=C_{m k}(T S) & R=R(T S)
\end{array}
$$

and rewrite (6) as

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} s} b_{m k}(S)+ & \left\langle\phi_{m}[R] \left\lvert\, \frac{\partial}{\partial s} \phi_{m}[R]\right.\right\rangle b_{m k}(S) \\
& =-\sum_{n \neq m} b_{n k}(S) \exp \left(\frac{\mathrm{i} T}{\hbar} \int_{S_{0}}^{s}\left(E_{m}\left[R^{\prime}\right]-E_{n}\left[R^{\prime}\right] \mathrm{d} S^{\prime}\right)\left\langle\phi_{m}[R] \left\lvert\, \frac{\partial}{\partial S} \phi_{n}[R]\right.\right\rangle\right. \tag{8}
\end{align*}
$$

By considering $b_{m k}\left(t_{0}\right)=\delta_{m k}$, the Volterra integral equation of (8) is obtained as

$$
\begin{align*}
b_{m k}(t)+\int_{S_{0}}^{s}\langle & \phi_{m}[R]\left|\frac{\partial}{\partial S} \phi_{m}[R]\right\rangle b_{m k}(S) \mathrm{d} S \\
= & \delta_{m k}-\sum_{n \neq m} \int_{S_{0}}^{s} b_{n k}\left(S^{\prime}\right)\left\langle\phi_{m}\left[R^{\prime}\right] \left\lvert\, \frac{\partial}{\partial S} \phi_{n}\left[R^{\prime}\right]\right.\right\rangle \\
& \times \exp \left(\frac{\mathrm{i} T}{\hbar} \int_{0}^{s^{\prime}}\left(E_{m}\left[R^{\prime \prime}\right]-E_{n}\left[R^{\prime \prime}\right]\right) \mathrm{d} S^{\prime \prime}\right) \mathrm{d} S^{\prime} \tag{9}
\end{align*}
$$

3. High-order adiabatic approximate method

For simplicity we let $S_{0}=0=t_{0}$ in the following sections. Integrating
$I_{m n}=\int_{0}^{S} b_{n k}\left(S^{\prime}\right)\left\langle\phi_{m}\left[R^{\prime}\right] \left\lvert\, \frac{\partial}{\partial S} \phi_{n}\left[R^{\prime}\right]\right.\right\rangle \exp \left(\frac{\mathbf{i} T}{\hbar} \int_{0}^{S^{\prime}}\left(E_{m}\left[R^{\prime \prime}\right]-E_{n}\left[R^{\prime \prime}\right]\right) \mathrm{d} S^{\prime \prime}\right) \mathrm{d} S^{\prime}$
by parts, we have

$$
\begin{gather*}
I_{m n}=\frac{-\mathrm{i} \hbar}{T} \exp \left(\mathrm{i} \alpha_{m n}(S) T\right) \frac{F(S)}{E_{m}-E_{n}}+\left(\frac{-\mathrm{i} \hbar}{T}\right)^{2} \exp \left(\mathrm{i} \alpha_{m n}(S) T\right) \frac{1}{E_{m}-E_{n}} \frac{\mathrm{~d}}{\mathrm{~d} s} \frac{1}{E_{m}-E_{n}} F(S) \\
+\left(\frac{-\mathrm{i} \hbar}{T}\right)^{3} \exp \left(\mathrm{i} \alpha_{m n}(S) T\right) \frac{I}{E_{m}-E_{n}} \frac{\mathrm{~d}}{\mathrm{~d} S} \frac{1}{E_{m}-E_{n}} \frac{\mathrm{~d}}{\mathrm{~d} s} \frac{1}{E_{m}-E_{n}} F(S)+\ldots \tag{11}
\end{gather*}
$$

where

$$
\begin{align*}
& \alpha_{m n}(S)=\hbar^{-1} \int_{0}^{s}\left(E_{m}\left[R^{\prime}\right]-E_{n}\left[R^{\prime}\right]\right) \mathrm{d} S^{\prime} \\
& F(S)=b_{m k}(S)\left\langle\phi_{m}[R] \left\lvert\, \frac{\partial}{\partial S} \phi_{n}[R]\right.\right\rangle \tag{12}\\
& E_{m}=E_{m}[R] .
\end{align*}
$$

By defining an operator

$$
\begin{equation*}
\hat{O}_{m n}=\frac{\partial}{\partial s}\left(\frac{1}{E_{m}-E_{n}}\right)+\frac{1}{E_{m}-E_{n}} \frac{\partial}{\partial s} \tag{13}
\end{equation*}
$$

(11) can be written as

$$
\begin{equation*}
I_{m n}=\sum_{l=0}^{\infty}\left(\frac{-\mathrm{i} \hbar}{T}\right)^{l+1} \exp \left(\mathrm{i} \alpha_{m n}(S) T\right)\left(E_{m}-E_{n}\right)^{-1}\left(\hat{O}_{m n}\right)^{\prime}\left\langle\phi_{m}[R] \mid \phi_{n}[R]\right\rangle \tag{14}
\end{equation*}
$$

Then, differentiating (9), we have

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} S} b_{m k}(S)+ & \left.\left\langle\phi_{m}[R]\right| \frac{\partial}{\partial S} \phi_{m}[R]\right) b_{m k}(S) \\
= & -\sum_{n \neq m} \sum_{i=0}^{\infty}\left(\frac{-\mathrm{i} \hbar}{T}\right)^{l+1} \frac{\partial}{\partial s} \\
& \left.\times\left(\frac{\exp \left(\mathrm{i} T \alpha_{m n}(S)\right)}{E_{m}-E_{n}}\left(\hat{O}_{m n}\right)^{\prime}\left\langle\phi_{m}[R]\right| \frac{\partial}{\partial S} \phi_{n}[R]\right) b_{n k}(S)\right) \tag{15}
\end{align*}
$$

If $1 / T$ is sufficiently small, it is reasonable to assume that $b_{m k}(S)$ can be expanded into a rapidly converging power series in $1 / T$, i.e.

$$
\begin{equation*}
b_{m k}(S)=\sum_{n}^{\infty}\left(\frac{-\mathrm{i} \hbar}{T}\right)^{n} b_{m k}^{[n]}(S) \tag{16}
\end{equation*}
$$

We substitute the expression (16) into both sides of (15) and obtain an equality between two power series in $1 / T$. In order that this equality be satisfied, the coefficients of each power of $1 / T$ must be separately equal, giving
$\frac{\mathrm{d}}{\mathrm{d} s} b_{m k}^{[0]}(S)+\left\langle\phi_{m}[R] \left\lvert\, \frac{\partial}{\partial S} \phi_{m}[R]\right.\right\rangle b_{m k}^{[0]}(S)=0$

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} S} b_{m k}^{[l]}+\left\langle\phi_{m}\right. & {[R]\left|\frac{\partial}{\partial S} \phi_{m}[R]\right\rangle b_{m k}^{[l]}(S) } \tag{17}\\
= & f_{(S)}^{[l]}=-\sum_{n=0}^{i-1} \sum_{n \neq m} \frac{\partial}{\partial S}\left(\frac{\exp \left(\mathrm{i} T \alpha_{m n}(S)\right)}{E_{m}-E_{n}}\left(\hat{O}_{m n}\right)^{n} b_{m k}^{(1-h-1)}(S)\right. \\
& \left.\times\left\langle\phi_{m}[R] \left\lvert\, \frac{\partial}{\partial S} \phi_{n}[R]\right.\right\rangle \hbar^{h+1}\right) .
\end{align*}
$$

Considering the initial conditions

$$
b_{m k}^{[0]}=\delta_{m k} \quad b_{m k}^{[i]}=0 \quad i=1,2,3, \ldots
$$

we successively solve equation (17), obtaining

$$
\left.\begin{array}{rl}
b_{m k}^{[0]}(S)=\delta_{m k} & \exp \left(-\int_{0}^{S}\left\langle\phi_{m}\left[R^{\prime}\right] \left\lvert\, \frac{\partial}{\partial S} \phi_{m}\left[R^{\prime}\right]\right.\right\rangle \mathrm{d} S^{\prime}\right) \\
b_{m k}^{[l]}(S)= & \exp (
\end{array}-\int_{0}^{S}\left\langle\phi_{m}\left[R^{\prime}\right] \left\lvert\, \frac{\partial}{\partial S} \phi_{m}\left[R^{\prime}\right]\right.\right\rangle \mathrm{d} S^{\prime}\right), ~\left(\int_{0}^{S}\left\langle\phi_{m}\left[R^{\prime \prime}\right] \left\lvert\, \frac{\partial}{\partial S^{\prime}} \phi_{m}\left[R^{\prime \prime}\right]\right.\right\rangle \mathrm{d} S^{\prime \prime}\right) \mathrm{d} S^{\prime} .
$$

4. Manifestation of first- and second-order approximate solutions

According to (4) and (18), under the adiabatic limit $T \rightarrow \infty$, the first-order evolution operator is

$$
\begin{align*}
U_{\left(1, t_{0}\right)}^{[0]}=\sum_{m=0}^{N} & \exp \left(-\int_{0}^{t}\left\langle\phi_{m}\left[R^{\prime}\right] \left\lvert\, \frac{\partial}{\partial t} \phi_{m}\left[R^{\prime}\right]\right.\right\rangle \mathrm{d} t^{\prime}\right. \\
& \times \exp \left(\frac{1}{i \hbar} \int_{0}^{t} E_{m}\left[R^{\prime}\right] \mathrm{d} t^{\prime}\right)\left|\phi_{m}[R(t)]\right\rangle\left\langle\phi_{m}\left[R\left(t_{0}\right)\right]\right| \tag{19}
\end{align*}
$$

which just gives the known quantum adiabatic theorem and the results obtained by Berry.

When the adiabatic condition does not hold, we consider the second-order approximation in an experiment of a spinning particle in a magnetic field, which has been considered under adiabatic conditions by Berry. A polarised beam of spin- $\frac{1}{2}$ particles along a magnetic field splits into two beams, one of which passes through a constant magnetic field $B_{0} e_{2}$, while the other passes through a varying magnetic field

$$
\begin{equation*}
\boldsymbol{B}(t)=\boldsymbol{B}_{0}\left(\sin \theta \cos \beta(t) \boldsymbol{e}_{x}+\sin \theta \sin \beta(t) \boldsymbol{e}_{y}+\cos \theta \boldsymbol{e}_{z}\right) \tag{20}
\end{equation*}
$$

where $\dot{\beta}(t)$ need not be uniform along a closed path in the parameter space M : $\left\{B_{x}, B_{y}, B_{z}\right\}$ and $\beta(t)$ satisfies $\beta(0)=0, \beta(T)=2 \pi$. The Hamiltonian is

$$
\hat{H}[\boldsymbol{B}(t)]=g \boldsymbol{S} \cdot \boldsymbol{B}=\hbar \omega_{0}\left[\begin{array}{cc}
\cos \theta & \sin \theta \exp (-\mathrm{i} \beta(t)) \tag{21}\\
\sin \theta \exp (\mathrm{i} \beta(t)) & -\cos \theta
\end{array}\right]
$$

where $\omega_{0}=\frac{1}{2} g B_{0}$ is the dynamical frequency.

From (4) and (7), we see that the wavefunction at time t_{1} is

$$
\begin{align*}
|\psi(T)\rangle=\left[\exp \left(-\sin ^{2} \frac{1}{2} \theta 2 \pi \mathrm{i}\right)+1\right] \exp (-\mathrm{i} \omega t)\left|\phi_{+}[B(0)]\right\rangle \\
+\frac{f(T)}{T} \exp \left(-\mathrm{i} \pi \cos ^{2} \frac{1}{2} \theta\right)\left|\phi_{-}[B(0)]\right\rangle \tag{22}
\end{align*}
$$

when the particle is initially in an eigenstate $\mid \phi_{+}[\boldsymbol{B}(0)]$ of $\hat{H}[\boldsymbol{B}(0)]$ with eigenvalue $\hbar \omega_{0}$, where
$f(t)=\frac{\mathrm{i} \hbar \sin \theta}{4 \omega_{0}} \int_{0}^{t} \frac{\partial}{\partial t^{\prime}}\left[B\left(t^{\prime}\right) \exp \left(2 \mathrm{i} \omega_{0} t^{\prime}-\mathrm{i} \frac{1}{2} \sin ^{2} \frac{1}{2} \theta \beta\left(t^{\prime}\right)\right)\right] \exp \left(\mathrm{i} \frac{1}{2} \cos ^{2} \frac{1}{2} \theta \beta\left(t^{\prime}\right)\right) \mathrm{d} t^{\prime}$.
If we adjust the path length of the beams such that the dynamical phases for both beams are the same when beams are combined in a detector at time T, the predicted intensity contrast is

$$
\begin{equation*}
I_{(\theta)}=I_{0} \cos ^{2}\left[\frac{1}{2} \pi(1-\cos \theta)\right]+f^{2}(T) / T^{2} \tag{24}
\end{equation*}
$$

which leads to an extra term f^{2} / T^{2} in Berry's result

$$
\begin{equation*}
I_{(\theta)}^{\prime}=I_{0} \cos ^{2}\left[\frac{1}{2} \pi(1-\cos \theta)\right] . \tag{25}
\end{equation*}
$$

It would be interesting to see the above prediction experimentally verified.

Acknowledgment

The author is grateful to Professors Zhao-Yan Wu and De-Huai Luan for their interest in the problem and for useful discussions.

Note added. After this paper was written, from a paper by Aharonov and Anndan [12] and the referee's report on my paper, I discovered that the experiment I propose, bridging the gap between small and large T, has now been carried out by D Suter, G Chingas, R A Hariss and A Pine.

References

[1] Berry M V 1984 Proc. R. Soc. A 39245
Simon B 1983 Phys. Rev. Lett. 512167
[2] Aharonov Y and Bohm D 1959 Phys. Rev. 115485
Aharonov Y and Susskind L 1967 Phys. Rev. 1581237
[3] Tomita A and Zhao R Y 1986 Phys. Rev. Lett. 57937
[4] Delacretaz G, Grunt E R, Whetten R L, Waste L and Zwanziger J W 1986 Phys. Rev. Lett. 572598
[5] Tycko R 1987 Phys. Rev. Lell. 582281
[6] Nikam R S and Ring P 1987 Phys. Rev. Lett. 58980
[7] Nelson P and Alvarez-Gaulm L 1985 Commun. Math. Phys. 99103
Sonoda H 1986 Nucl. Phys. B 266410
[8] Mead C A and Trular B G 1979 J. Chem. Phys. 702284
[9] Semenoff G W and Sodano P 1986 Phys. Rev. Lett. 571195
[10] Berry M V 1985 J. Phys. A: Math. Gen. 1815
Gozzi E and Thacker D 1987 Phys. Rev. D 35 2388, 2398
[11] Messiah A 1962 Quantum Mechanics vol 2 (Amsterdam: North-Holland)
[12] Aharonov Y and Anndan J 1987 Phys. Rev. Lett. 581593

